stAItuned logo
🏗️

Model Architectures & Training

Deep dives into internal architectures (MoE, Attention) and training techniques (Fine-tuning, RLHF).

19
Articoli
🏗️Topic Hub
🏁

Inizia Qui

Segui questo percorso consigliato

Definition

What is Model Architectures & Training?

Questo argomento esplora la sala macchine dell'AI moderna. Copre i meccanismi interni dei Transformer (Attention, Feed-Forward Networks), le variazioni architettoniche come Mixture of Experts (MoE) contro i modelli Dense, e il ciclo di vita dell'addestramento di un modello—dal Pre-training su enormi dataset al Fine-tuning per compiti specifici e RLHF per l'allineamento.

Strategie

  • Sviluppo di Modelli Personalizzati: Quando i modelli standard non sono sufficienti e hai bisogno di perfezionare un modello sui dati specifici del tuo dominio.
  • Ottimizzazione delle Prestazioni: Capire perché i modelli MoE potrebbero essere più veloci/economici per l'inferenza ma più difficili da perfezionare.
  • Ricerca & Sperimentazione: Se vuoi sperimentare con nuove tecniche di addestramento come LoRA (Low-Rank Adaptation) o QLoRA per adattare in modo efficiente modelli come Llama o Mistral.

Rischi / Errori comuni

  • Overfitting: Addestrare su un piccolo dataset per troppo tempo, facendo sì che il modello memorizzi gli esempi e perda la capacità di generalizzare.
  • Dimenticanza Catastrofica (Catastrophic Forgetting): Quando un modello "dimentica" le sue conoscenze precedenti (es. come programmare) dopo essere stato perfezionato pesantemente su un nuovo compito (es. diagnosi medica).
  • Problemi di Qualità dei Dati: "Garbage In, Garbage Out". Sprecare calcolo addestrando con dati di scarsa qualità è lo spreco di risorse più comune nell'ingegneria AI.

FAQ

Cos'è il Fine-Tuning? Il fine-tuning è il processo di prendere un modello pre-addestrato (che capisce già il linguaggio) e addestrarlo ulteriormente su un dataset più piccolo e specifico per specializzarlo in un compito o stile particolare.
Cos'è MoE (Mixture of Experts)? Un'architettura in cui il modello è diviso in molte sotto-reti "esperte" più piccole. Per ogni token, un "router" seleziona solo pochi esperti per elaborarlo. Ciò consente al modello di avere parametri totali enormi (conoscenza) ma parametri attivi molto più bassi (velocità/costo) per inferenza.
Cos'è LoRA? Low-Rank Adaptation (LoRA) è una tecnica efficiente di fine-tuning che congela i pesi del modello principale e addestra solo un minuscolo strato adattatore. Riduce drasticamente la memoria e il calcolo necessari per personalizzare gli LLM.
📖

Guide & Approfondimenti

TOON vs JSON for LLMs: Performance & Accuracy Deep Dive
🔬 ExpertDec 3, 202510 min lettura

TOON vs JSON for LLMs: Performance & Accuracy Deep Dive

Discover why LLMs struggle with JSON and how TOON's schema-aware structure can improve accuracy, reduce hallucinations, and cut token usage in AI workflows.

Leggi articolo
What is Mixture of Experts (MoE)? The Secret Behind Efficient AI Models
🔬 ExpertJan 30, 20255 min lettura

What is Mixture of Experts (MoE)? The Secret Behind Efficient AI Models

Discover how Mixture of Experts (MoE) enables AI models to scale efficiently without massive computational costs. Learn how MoE works, its advantages, and real-world implementations in LLMs

Leggi articolo
Large Concept Models: Meta’s Next Frontier in AI
🔬 ExpertDec 25, 20245 min lettura

Large Concept Models: Meta’s Next Frontier in AI

Explore Meta's revolutionary Large Concept Models (LCMs), their high-level abstraction, SONAR embedding space, and performance benchmarks. Discover how LCMs redefine AI capabilities with multilingual and multimodal support.

Leggi articolo
ModernBERT: Redefining Encoder-Only Transformer Models
🔬 ExpertDec 19, 20245 min lettura

ModernBERT: Redefining Encoder-Only Transformer Models

Explore ModernBERT, a state-of-the-art evolution of BERT with extended context handling, architectural enhancements, and applications in NLP and code understanding. Discover its benchmarks and practical use cases.

Leggi articolo
Meta Learning for Model Optimization: A Comprehensive Guide
🔬 ExpertNov 20, 20244 min lettura

Meta Learning for Model Optimization: A Comprehensive Guide

Discover how meta-learning revolutionizes model optimization with a 3-step approach: featurizing meta-data, training a meta-learner, and searching for optimal models. Learn how this method automates AI efficiency

Leggi articolo
Understanding Generative Adversarial Networks (GANs): A Student’s Guide
MidwayOct 20, 20245 min lettura

Understanding Generative Adversarial Networks (GANs): A Student’s Guide

Learn about Generative Adversarial Networks (GANs) in simple terms. Discover how GANs work, practical examples like image generation, and code to start your journey in machine learning

Leggi articolo
Microsoft Open-Sources BitNet: A 1-Bit LLM Framework Revolutionizing AI Efficiency
🔬 ExpertSep 20, 20243 min lettura

Microsoft Open-Sources BitNet: A 1-Bit LLM Framework Revolutionizing AI Efficiency

Microsoft open-sources BitNet, a 1-bit LLM framework that optimizes AI efficiency by reducing memory and energy demands. Learn how BitNet is transforming large language models

Leggi articolo
The Power of Synthetic Data Enhancing AI Model
🔬 ExpertSep 12, 202325 min lettura

The Power of Synthetic Data Enhancing AI Model

Unlock AI's potential with synthetic data. Explore GANs, VAEs, and Diffusion Models, code examples, and quality checks. Elevate your AI's performance!

Leggi articolo
Elevate Your Time Series Analytics with Temporal Fusion Transformer
🔬 ExpertApr 12, 20235 min lettura

Elevate Your Time Series Analytics with Temporal Fusion Transformer

Time series analysis made easy with Temporal Fusion Transformer. Discover its versatility and improve your decision-making process

Leggi articolo
TensorFlow CNN for Multilabel Image Classification Task
🔬 ExpertMar 24, 20234 min lettura

TensorFlow CNN for Multilabel Image Classification Task

TensorFlow CNN for Multilabel Image Classification Task

Leggi articolo
Contextualized Embeddings with ELMo
🔬 ExpertMar 15, 20233 min lettura

Contextualized Embeddings with ELMo

Discover the power of ELMo, the state-of-the-art deep-learning model that generates contextualized word representations for improved natural language processing tasks.

Leggi articolo
Using Autoencoders for Anomaly Detection in Strong Unbalanced Datasets
🔬 ExpertFeb 2, 20233 min lettura

Using Autoencoders for Anomaly Detection in Strong Unbalanced Datasets

Anomaly detection is a critical task in various domains such as fraud detection, network intrusion detection, and medical diagnosis. One of the main challenges in anomaly detection is dealing with strong unbalanced datasets, where the number of anomalous examples is significantly smaller than the number of normal examples.

Leggi articolo
Stable Diffusion: Creare Immagini a partire dal Testo
🌱 NewbieJan 31, 20232 min lettura

Stable Diffusion: Creare Immagini a partire dal Testo

Esplora Stable Diffusion: Trasforma testo in immagini realistiche. Scopri usi in intrattenimento, contenuti digitali e istruzione.

Leggi articolo
Advanced Data Normalization Techniques for Financial Data Analysis
🔬 ExpertJan 16, 20233 min lettura

Advanced Data Normalization Techniques for Financial Data Analysis

In the financial industry, data normalization is an essential step in ensuring accurate and meaningful analysis of financial data.

Leggi articolo
Model uncertainty through Monte Carlo dropout - PT2
🔬 ExpertDec 6, 202214 min lettura

Model uncertainty through Monte Carlo dropout - PT2

Practical example of the Monte Carlo dropout with code.

Leggi articolo
Model uncertainty through Monte Carlo dropout - PT1
🔬 ExpertNov 21, 20227 min lettura

Model uncertainty through Monte Carlo dropout - PT1

Model uncertainty is typically handled via Bayesian Deep Learning, but this comes with a prohibitive cost. A solution is given by the MC Dropout.

Leggi articolo
Super Resolution: what is it and why is it useful?
🌱 NewbieNov 9, 20227 min lettura

Super Resolution: what is it and why is it useful?

Of the various computer vision techniques, super-resolution tasks are among the least known but at the same time they could become more changing in the future.

Leggi articolo
Generative Adversarial Networks GAN
MidwayOct 24, 20223 min lettura

Generative Adversarial Networks GAN

GANs represent a huge innovation for generative models, they automatically learn patterns in data inputs, generating outputs based on the original dataset.

Leggi articolo
X-Ray Image Segmentation using U-Nets
🔬 ExpertOct 20, 20225 min lettura

X-Ray Image Segmentation using U-Nets

Using U-Nets for segmenting regions of interest in X-ray images, it is an introduction to U-Nets and one of its many applications!

Leggi articolo